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Fundemental Role of MVC

“Seperation of Concern”
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Interactions Among Software 
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Problems with MVC

● MVC helps modularization of a system in 
terms of business functionality

● However, it doesn't lay a clear path about how 
to transform user interactions into functional 
behaviour

● It cannot organize interactions among 
components and cannot remove dependencies 
among components either



 

Solution: MVP + Mediator

● A variation of MVP helps us to handle UI 
rendering and functional behaviour separately

● Mediator, on the other hand, orchestrates 
interactions among components, and removes 
dependencies among themselves
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Interactions Among Software 
Components After Mediator
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Example: 
Address Info Management UI
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Mediator
public class Mediator {

private Collection<Presenter> listeners = new 
ArrayList<Presenter>();

public void addListener(Presenter listener) {
listeners.add(listener);

}

public void removeListener(Presenter listener) {
listeners.remove(listener);

}

public void publish(BusinessEvent event) {
for(Presenter listener:listeners) {

listener.handle(event);
}

}
}
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Address List Presenter
public class AddressListPresenter implements Presenter {

private AddressListView view;

public AddressListPresenter(AddressListView view,
Mediator mediator) {

this.view = view;
mediator.addListener(this);

}

@Override
public void handle(BusinessEvent event) {

...
}

}



 

Address Detail Presenter
public class AddressDetailPresenter implements Presenter {

private AddressDetailView view;

public AddressDetailPresenter(AddressDetailView view, 
Mediator mediator) {

this.view = view;
mediator.addListener(this);

}

@Override
public void handle(BusinessEvent event) {

...
}

}



 

Address ToolBar Presenter
public class AddressToolBarPresenter implements Presenter {

private AddressToolBarView view;

public AddressToolBarPresenter(AddressToolBarView view, 
Mediator mediator) {

this.view = view;
mediator.addListener(this);

}

@Override
public void handle(BusinessEvent event) {

...
}

}



 

Mediator
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That UI event is immediately transformed
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Step 2:UI Interaction (Item Select)
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Address List View
public class AddressListView {

public AddressListView(Mediator mediator) {
this.mediator = mediator;

}

@Override
public void valueChange(ValueChangeEvent event) {

Address address = (Address) table.getValue();

AddressSelectedEvent selectedEvent = new 
AddressSelectedEvent(address);

mediator.publish(selectedEvent);
}

public void loadAddresses(Collection<Address> addresses) {
...

}
}
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Address Detail Presenter
public class AddressDetailPresenter implements Presenter {

...

@Override
public void handle(BusinessEvent event) {

if(event instanceof AddressSelectedEvent) {
AddressSelectedEvent selectedEvent = 

(AddressSelectedEvent)event;
Address address = 

selectedEvent.getSelectedAddress();
view.displayAddress(address);

}
}

}



 

Address ToolBar Presenter
public class AddressToolBarPresenter implements Presenter {

...

@Override

public void handle(BusinessEvent event) {
if(event instanceof AddressSelectedEvent) {

AddressSelectedEvent selectedEvent = 
(AddressSelectedEvent)event;

Address address = 
selectedEvent.getSelectedAddress();

view.switchToUpdateMode();
view.setAddress(address);

} else if(event instanceof AddressUpdateEvent) {
view.switchToSelectionMode();

}
}

}
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button triggers
a UI event

That UI event is immediately transformed
into a business event and published 
through mediator

Adım 2:UI Interaction (Button Click)
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Address ToolBar View
public class AddressToolBarView {

public AddressToolBarView(Mediator mediator) {
this.mediator = mediator;

}

@Override
public void buttonClick(ClickEvent event) {

if(event.getButton() == updateButton) {
AddressUpdateEvent updateEvent = 

new AddressUpdateEvent(address);
mediator.publish(updateEvent);

}
}

public void setAddress(Address address) {
this.address = address;

}
}
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Adım 3:Event Notification
(Address Update)

DAO

Service

Presenters executes
business operation
signalled by the event
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Address List Presenter
public class AddressListPresenter implements Presenter {

...

@Override
public void handle(BusinessEvent event) {

if(event instanceof AddressUpdateEvent) {
AddressUpdateEvent updateEvent = 

(AddressUpdateEvent)event;

Address address = updateEvent.getAddress();

view.reloadAddress(address);

}
}

}



 

Address ToolBar Presenter
public class AddressToolBarPresenter implements Presenter {

...

@Override

public void handle(BusinessEvent event) {
if(event instanceof AddressSelectedEvent) {

AddressSelectedEvent selectedEvent = 
(AddressSelectedEvent)event;

Address address = 
selectedEvent.getSelectedAddress();

view.switchToUpdateMode();
view.setAddress(address);

} else if(event instanceof AddressUpdateEvent) {
view.switchToSelectionMode();

}
}

}



 

Address Update



Q & A



Contact

● Harezmi IT Solutions
● http://www.harezmi.com.tr
● info@harezmi.com.tr

http://www.harezmi.com.tr/
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