
Developing Reusable Software 
Components using MVP, 

Observer and Mediator Patterns



Who is Kenan Sevindik?

● Over 15 years enterprise 
software development 
experience

● Involved in developing 
architectures for various 
projects in nationwide

● Has extensive knowledge 
and experience about several 
enterprise Java technologies, 
such as Spring, Spring 
Security, Hibernate, Vaadin



Who is Kenan Sevindik?

● Author of Beginning Spring 
Book published by Wiley in 2015

● Founded Harezmi IT Solutions 
in 2011

● Focused on enterprise software 
development

● Offering software development 
consultancy and mentoring 
services

● Organizing trainings under the 
bran d name of “Enterprise Java 
Trainings”



Layered Architecture

UI

Service

DAO

DB



 

Controller

Data changes

User inputs and 
UI events

Notifications

Data access

Model View

An Architectural Pattern: MVC



MVC & Observer

Subject

Observer 1

Observer 2

Observer 3

Subject changed...

notify

notify

notify



 

Fundemental Role of MVC

“Seperation of Concern”



 

Current MVC Interpretation

Controller

View

Model

User



Front Controller

Front Controller
Request
Handler

View

model

request

response

delegate request handle
request

create
model

model
render
response

Web Container



Layered Architecture

Controller

Service

DAO

DB

Presentation



Layered Architecture and Modularity

Controller

Service

DAO

DB

Presentation



Layered Architecture and Modularity

DB

Controller

Service

DAO

Presentation

Controller

Service

DAO

Presentation

Controller

Service

DAO

Presentation



Layered Architecture and Modularity

Service

DAO

DB

Controller

Presentation

Controller

Presentation

Controller

Presentation



Layered Architecture and Modularity

DB

Controller

Presentation

Service

DAO

Controller

Presentation

Controller

Presentation

Service

DAO

Service

DAO



 

Interactions Among Software 
Components

Component

Component

Component



 

Interactions Among Software 
Components

Component

ComponentComponent

Component

Component



 

Problems with MVC

● MVC helps modularization of a system in 
terms of business functionality

● However, it doesn't lay a clear path about how 
to transform user interactions into functional 
behaviour

● It cannot organize interactions among 
components and cannot remove dependencies 
among components either



 

Solution: MVP + Mediator

● A variation of MVP helps us to handle UI 
rendering and functional behaviour separately

● Mediator, on the other hand, orchestrates 
interactions among components, and removes 
dependencies among themselves



 

Model View Presenter

Presenter

Model

UI events are transformed into 
business events specific to application

Presenter reflect changes
to UI be calling necessary
functions and passing
necessary data into it

Changes on
model are 
notified via
events to 
Presenter

Presenter
can update
Model

Presenter can
read Model

View



 

Interactions Among Software 
Components



 

Mediator



 

Interactions Among Software 
Components After Mediator

Component

ComponentComponent

Component

Component

Mediator

event 
publish

notify

notify

notify

notify



Interactions Among Software 
Components After Mediator

DB

Controller

Presentation

Service

DAO

Controller

Presentation

Controller

Presentation

Service

DAO

Service

DAO

Event
Context
(Event

&
Model)

Event
Context

(Event
&

Model)



 

Example: 
Address Info Management UI

Address
List
View

Address
Detail
View

Address ToolBar View



 

Mediator
public class Mediator {

private Collection<Presenter> listeners = new 
ArrayList<Presenter>();

public void addListener(Presenter listener) {
listeners.add(listener);

}

public void removeListener(Presenter listener) {
listeners.remove(listener);

}

public void publish(BusinessEvent event) {
for(Presenter listener:listeners) {

listener.handle(event);
}

}
}



 

Mediator

ListView

ListPresenter

Each component registers itself
to mediator in order to get
informed about changes occuring
on other components

To
ol

B
ar

P
re

se
nt

er

To
ol

B
ar

V
ie

w

DetailView

Detail
Presenter

Each component registers itself
to mediator in order to get
informed about changes occuring
on other components

Each component registers itself
to mediator in order to get
informed about changes occuring
on other components

Step 1: Mediator Registration

1.a

1.b

1.c



 

Address List Presenter
public class AddressListPresenter implements Presenter {

private AddressListView view;

public AddressListPresenter(AddressListView view,
Mediator mediator) {

this.view = view;
mediator.addListener(this);

}

@Override
public void handle(BusinessEvent event) {

...
}

}



 

Address Detail Presenter
public class AddressDetailPresenter implements Presenter {

private AddressDetailView view;

public AddressDetailPresenter(AddressDetailView view, 
Mediator mediator) {

this.view = view;
mediator.addListener(this);

}

@Override
public void handle(BusinessEvent event) {

...
}

}



 

Address ToolBar Presenter
public class AddressToolBarPresenter implements Presenter {

private AddressToolBarView view;

public AddressToolBarPresenter(AddressToolBarView view, 
Mediator mediator) {

this.view = view;
mediator.addListener(this);

}

@Override
public void handle(BusinessEvent event) {

...
}

}



 

Mediator

ListView

ListPresenter

Selection of an Item from list
triggers a UI event

That UI event is immediately transformed
into a business event and published 
through mediator

To
ol

B
ar

P
re

se
nt

er

To
ol

B
ar

V
ie

w

DetailView

Detail
Presenter

Step 2:UI Interaction (Item Select)
2.1

2.2



 

Address List View
public class AddressListView {

public AddressListView(Mediator mediator) {
this.mediator = mediator;

}

@Override
public void valueChange(ValueChangeEvent event) {

Address address = (Address) table.getValue();

AddressSelectedEvent selectedEvent = new 
AddressSelectedEvent(address);

mediator.publish(selectedEvent);
}

public void loadAddresses(Collection<Address> addresses) {
...

}
}



 

Mediator

ListView

ListPresenter

UI state
updated

DetailView

Detail
Presenter

UI state
updated

To
ol

B
ar

P
re

se
nt

er

To
ol

B
ar

V
ie

w

Mediator notifies other
components interested
in that business event

Mediator notifies other
components interested
in that business event

DAO

Service
Presenters executes
business operation
signalled by the event
by delegating the job
to the service layer

Step 3:Event Notification 
(Address Selected)

3.1.a

3.1.b

3.2.b

3.2.a

3.3.a

3.3.b



 

Address Detail Presenter
public class AddressDetailPresenter implements Presenter {

...

@Override
public void handle(BusinessEvent event) {

if(event instanceof AddressSelectedEvent) {
AddressSelectedEvent selectedEvent = 

(AddressSelectedEvent)event;
Address address = 

selectedEvent.getSelectedAddress();
view.displayAddress(address);

}
}

}



 

Address ToolBar Presenter
public class AddressToolBarPresenter implements Presenter {

...

@Override

public void handle(BusinessEvent event) {
if(event instanceof AddressSelectedEvent) {

AddressSelectedEvent selectedEvent = 
(AddressSelectedEvent)event;

Address address = 
selectedEvent.getSelectedAddress();

view.switchToUpdateMode();
view.setAddress(address);

} else if(event instanceof AddressUpdateEvent) {
view.switchToSelectionMode();

}
}

}



 

Address Selected



 

Mediator

ListView

ListPresenter

To
ol

B
ar

P
re

se
nt

er

To
ol

B
ar

V
ie

w

DetailView

Detail
Presenter

Clicking a
button triggers
a UI event

That UI event is immediately transformed
into a business event and published 
through mediator

Adım 2:UI Interaction (Button Click)

2.1

2.2



 

Address ToolBar View
public class AddressToolBarView {

public AddressToolBarView(Mediator mediator) {
this.mediator = mediator;

}

@Override
public void buttonClick(ClickEvent event) {

if(event.getButton() == updateButton) {
AddressUpdateEvent updateEvent = 

new AddressUpdateEvent(address);
mediator.publish(updateEvent);

}
}

public void setAddress(Address address) {
this.address = address;

}
}



 

Mediator

ListView

ListPresenter

UI state
updated

Mediator notifies other
components interested
in that business event

To
ol

B
ar

P
re

se
nt

er

To
ol

B
ar

V
ie

w

DetailView

Detail
Presenter

UI state
updated

Mediator notifies other
components interested
in that business event

Adım 3:Event Notification
(Address Update)

DAO

Service

Presenters executes
business operation
signalled by the event
by delegating the job
to the service layer

3.1.a

3.1.b

3.2.a

3.2.b

3.3.a

3.3.b



 

Address List Presenter
public class AddressListPresenter implements Presenter {

...

@Override
public void handle(BusinessEvent event) {

if(event instanceof AddressUpdateEvent) {
AddressUpdateEvent updateEvent = 

(AddressUpdateEvent)event;

Address address = updateEvent.getAddress();

view.reloadAddress(address);

}
}

}



 

Address ToolBar Presenter
public class AddressToolBarPresenter implements Presenter {

...

@Override

public void handle(BusinessEvent event) {
if(event instanceof AddressSelectedEvent) {

AddressSelectedEvent selectedEvent = 
(AddressSelectedEvent)event;

Address address = 
selectedEvent.getSelectedAddress();

view.switchToUpdateMode();
view.setAddress(address);

} else if(event instanceof AddressUpdateEvent) {
view.switchToSelectionMode();

}
}

}



 

Address Update



Q & A



Contact

● Harezmi IT Solutions
● http://www.harezmi.com.tr
● info@harezmi.com.tr

http://www.harezmi.com.tr/
mailto:info@harezmi.com.tr

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

