
Dynamic Proxy Based
View Model API

Who is Kenan Sevindik?

● Over 15 years of enterprise
application development
experience

● Involved in creation and
development of architectures
of various projects

● Has extensive knowledge
and experience about
enterprise Java technologies,
such as Spring, Spring
Security, Hibernate, Vaadin and
so on...

Who is Kenan Sevindik?

● Co-author of Beginning
Spring Book

● Founded Harezmi IT
Solutions in 2011

● What Harezmi does?
– Involves in development of

enterprise Java applications

– Offers consultancy and
mentoring services

– Organizes enterprise Java
technologies related trainings

Several problems arise in case
persistent domain objects

fetched via JPA/Hibernate are
directly bound to UI layer!

Problem

Scenario 1

● Let's assume we have a typical master-detail
UI in which Owner and its Pets are displayed
and edited

User lists a group of Owners, and selects
an Owner from the list, then goes into the
detail view

He performs changes over some of the
properties of selected Owner, but doesn't
click “Save Changes” button yet

Scenario 1

Later, without saving those performed
changes, it switches into Owner Pets tab,
and starts editing a Pet instance from there

Both changes in Owner record, and Pet
record are reflected altogether, when he
clicks “Save Changes” button after
finishing his changes over Pet record

Scenario 1: Overview

● Both changes in Owner and Pet records are
reflected into DB althogether

● User was not able to cancel out changes
made over Pet, and reflect only the changes
made over Owner

● User was not able to cancel out changes made
over Owner, and reflect only the changes
made over Pet, either

Scenario 1: Overview

● It is necessary that old property values should
be stored somewhere else, so that user
changes could be reverted back using those
stored values whenever user cancels out his
operation

Scenario 1 Derivatives

● Similar results with this scenario may occur like
addition of a new Pet record

● Or deletion of an existing Pet record
unintentionally

● It is necessary that changes in pets collection
should be reverted back whenever user
decides to cancel out his current operation

Scenario 2

User enters details in order to
create a new Owner record in DB
and clicks “Add” button

However, an error is rised from within
business layer because of errornous
data entered by the user

Scenario 2

User corrects his fault, and clicks
“Add” button again

Unfortunately, this time persistence
layer fails because of the state change
occured within domain object during
his first attempt

Scenario 2: Overview

● Persistence layer assigns PK value to identifier
property of Owner object which is in transient state
during persist operation

● However, transaction is rollbacked and Owner is not
saved into DB due to error occured within business
layer

● During the second trial, persistence layer thinks that
Owner is in detached state because of the
assigned PK value and fails persistence operation
because of this

Scenario 2: Overview

● State of the domain object should have ben
reverted back to its initials when transaction
rolled back during the first attempt

Scenario 3

● Assume, Owner – Pets association is fetched
on demand (lazy)

User lists a group of Owner records, selects
an Owner within the list, and navigates to
the detail view

User works on several properties of selected
Owner record, changes them and so on

Scenario 3

When he switches to the “Owner Pets” tab in order to
list Pet records, detached owner is re-attached to the
persistence context in order to fetch contents of the
pets collection from DB. During this re-attachment,
however, those changes performed previously will
be flushed into DB as a side effect of this re-attachment

Scenario 3: Overview

● Lazy association should have been handled
on its own

● Any changes performed on the detached
object should not have been reflected into DB
as a side effect of this handling of lazy
association

Scenario 4

It is required to store selection information of
Owner records somewhere in the application.
The most practical place for this looks like
Owner domain objects themselves. A property
for such purpose is added into domain classes
and used only to store selection of domain
Object. It is not related with business logic
at all.

Users may ask for Owners' names to be
listed together as “fullName”, instead of
firstName and lastName separated. Again,
the easiest way to achieve this looks like
adding a method as getFullName() to return
firstName and lastName concatenated. This
method has nothing to do with business
logic, either.

Scenario 4: Overview

● Properties and methods which have nothing
to do with business logic have been added
into domain classes

● Those domain classes would be aimed to be
used as reusable units in different applications

● In such a case, adding such properties and
methods would pollute domain model at hand

Solution !: DTO Layer

Domain
Model

DTO
Layer

● Data needed by the UI is obtained from domain objects and
transferred into DTOs and DTOs are bound to the UI

● Use input, therefore, is first accumulated into DTOs as UI
components are bound to DTOs

● The input accumulated within DTOs are transferred into domain
instances at appropriate times and business is performed using it

DTO, Wasn't It An Anti-Pattern?

● In the early ages of Java EE application development,
DTOs were used to transfer data between layers

● It predates back to Value Object pattern
● EJB method calls were remote only, and those

remote procedure calls were causing performance
problems

● DTOs were then employed in order to reduce
communication overhead of those RPCs caused by
translation of excessive number of method parameters

DTO, Wasn't It An Anti-Pattern?

● The most criticized aspect of DTO
pattern is its violation of DRY principle

● According to DRY (dont repeat yourself)
principle, a task should be
implemented only once and at only
one single place in the system

● Most of the time, many of the properties
and methods in domain classes are
simply repeated in DTO classes as well

● Apart from such repetition, several other
properties and methods specific to
DTOs are added, too

DTO, Wasn't It An Anti-Pattern?

● DTOs, today mostly
are qualified as anti-
pattern because of
such repetition, and
ecouragement of
several UI and
persistence
frameworks to bind UI
to domain classes
directly

Today's Situation

● Nowadays, domain instances are
usually fetched from DB, using a
persistence framework, such as
JPA/Hibernate

● Afterwards, they are directly bound
to UI components which are
developed using a UI framework,
life JSF

● Hence, transferring user input from
over domain objects directly into
the DB has become mainstream

Revision in Naming:
View Model

● Unfortunately, such a naming like DTO or Value
Object may cause underestimation of the need of
separating UI and domain layers from each
other

● Therefore, entitling the solution with a different
name might be useful in terms of revealing
functionality of such a new layer

● Our preference is to use View Model as it
reveals its direct relationship with UI layer more

Problem with DRY
Still Exists!

● However, revision in the naming doesn't help us
to get away from core of the problem

● How such a View Model layer can be generated
without violating DRY principle?

Solution :
Dynamic Proxy Class

Generation !
● View Model classes are generated out of

domain classes dynamically using Proxy
pattern

Proxy Pattern

Client Target

Proxy

Method calls from client first arrive at proxy instance before reaching their target
destination

Proxy, before and after thos method calls can perform tasks related with the call

Proxy is of same type with its target, and it intercepts method calls occuring
between client and the target

Client, on the other hand, is not aware of it interacts with proxy instance instead

Proxy Class Diagram

Proxy Generation Strategies

● Interface Proxy
– Interfaces implemented by the actual model class

are used to generate proxy class

– Known as JDK proxy

● Class Proxy
– Domain model class is extended to generate proxy

class

– Known as CGLIB or Javassist proxy

View Model API

● An API, in the role of a bridge between UI and
persistent domain objects is necessary to
operate

● Proxy classes generated from those domain
classes should also own this API as well

UI Domain Model

View Model API

● getModel
– Allows acces to the wrapped domain model instance

● flush
– Reflects changes accumulated in the view model instance into the

wrapped domain model

● refresh
– Reverts state of the view model into its initial version

● savepoint(id)/rollback(id)
– Allows to save current state of view model associating it with the given

identifier, then to roll back the changes in the view model state back to
the state identified by the given identifier

View Model API

● isDirty
– Detects if view model state has been changed or not

● isSelected/setSelected
– Helps to identify if view model instance is selected within the bounded

UI component, and to mark it as selected

● isTransient
– Helps to check if domain model wrapped by the view model is

persisted into DB before or not

● replace(Object model)
– Replaces given model object with the already wrapped model instance

within the view model

View Model API

● addedElements(propertyName)
– Returns elements which are added into the collection

property identified by the given propertyName

● removedElements(propertyName)
– Returns elements which are removed from the

collection property identified by the given propertyName

● dirtyElements(propertyName)
– Returns elements whose state has been changed in the

collection property identified by the given propertyName

View Model API in Action:
Implementing Scenario 1 Using View Model API

EntityManager em = emf.createEntityManager();
em.getTransaction().begin();

List<Owner> owners = em.createQuery(
"from Owner").getResultList();

List<Owner> viewModels = new
ArrayList<Owner>(owners.size());

for(Owner model:owners) {
Owner viewModel = viewModelCreator

.create(Owner.class, model);
viewModels.add(viewModel);

}

Owner selectedOwner = null;
for(Owner viewModel:viewModels) {

if(((ViewModel<Owner>)viewModel)._isSelected_()) {
selectedOwner = viewModel;
break;

}
}

View Model API in Action:
Implementing Scenario 1 Using View Model API

selectedOwner.setEmail("veli@test.com.tr");

...

((ViewModel<Owner>) selectedOwner)
._savepoint_("pets_tab_view");

Pet selectedPet = null;

for(Pet pek:selectedOwner.getPets()) {
if(((ViewModel<Pet>)pek)._isSelected_()) {

selectedPet = pek;
break;

}
}

View Model API in Action:
Implementing Scenario 1 Using View Model API

selectedPet.setName("Cingöz");

...

((ViewModel<Owner>)selectedOwner)
._rollback_("pets_tab_view");

((ViewModel<Owner>) selectedOwner)._flush_();

em.getTransaction().commit();
em.close();

View Model API in Action:
Adding UI Specific Fields & Methods

public interface OwnerViewModel {
public String getFullName();

}

public class OwnerViewModelImpl
extends ViewModelImpl<Owner>

implements OwnerViewModel {
public OwnerViewModelImpl(Owner model,

ViewModelDefinition definition) {
super(model, definition);

}

@Override
public String getFullName() {

String firstName = _getModel_().getFirstName();
String lastName = _getModel_().getLastName();
String fullName = "";
if (StringUtils.isNotEmpty(firstName)) {

fullName += firstName;
}
if (StringUtils.isNotEmpty(lastName)) {

if (StringUtils.isNotEmpty(fullName)) {
fullName += " ";

}
fullName += lastName;

}
return fullName;

}
}

View Model API in Action:
Adding UI Specific Fields & Methods

public class PetClinicViewModelDefinitionProvider
implements ViewModelDefinitionProvider {

@Override
public Collection<ViewModelDefinition> getViewModelDefinitions() {

ViewModelDefinition petDef = new ViewModelDefinition(Pet.class);
ViewModelDefinition ownerDef =

new ViewModelDefinition(Owner.class,OwnerViewModelImpl.class);
ownerDef.addDefinition("pets", petDef);
return Arrays.asList(ownerDef, petDef);

}
}

Conclusion

● Reusing persistent domain objects
within the UI layer causes several
persistence related problems in the
system

● An intermediate layer between UI
and domain model is required in this
case

● An API to execute operations through
this intermediate layer which becomes
a bridge between UI and domain model

● Such a layer, which is called as “View
Model” can be created by employing
dynamic proxy class generation
method

Questions & Answers

Contact

● Harezmi IT Solutions
● http://www.harezmi.com.tr
● info@harezmi.com.tr

http://www.harezmi.com.tr/
mailto:info@harezmi.com.tr

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

