Employing a View Model API
Based on
Dynamic Proxies

(Decoupling Persistent Domain Objects from Ul)

it solutions

\(harezmi

* Over 15 years of enterprise

application development
experience

Involved in creation and
development of
architectures in various
enterprise projects

Has extensive knowledge
and experience about
enterprise Java technologies,
such as Spring, Spring
Security, Hibernate, Vaadin...

Creates Value...

vaadin }>

g

« Co-author of Beginning
Spring Book (published in
2015)

e Founded Harezmi IT
Solutions in 2011

« What Harezmi does?

- Involves in development of
enterprise Java applications

- Offers consultancy and
mentoring services

- Organizes enterprise Java
technologies related trainings

Creates Value...

bilisim cozimleri

c Speedy

JAN A
Egitimlenri

What is the Problem?

Several problems arise In case
persistent domain objects
fetched via JPA/Hibernate are
directly bound to Ul layer!

Creates Value...

Creates Value...

Scenario 1

» L et's assume we have a typical master-detail Ul
In which Owner and his/her Pets are displayed

e And assume, Owner — Pets association IS
fetched on demand (lazy)

Owner List View Owner Detail Tab View

[] |First Name Last Name E-Mail i -

Owner Detail] Owner Peks,
O |Al Gilg ali@example.com 7
LTf'_[Veli Dogru veli@test.com First Name Veli
[[] |Cengiz Cetin cengiz@gmail.con

Last Name Dogru
[|Ayse IUS ayse@yahoo.com

E-Mail Q@teshcnm.tr >

Add Owner | |Remove Owners| | Edit Owneg|,
\ Save Changes Cancel

User lists a group of Owner entities, selects

an Owner within the list, and navigates into User may change some of the properties of
the detail view selected Owner entity

Scenario 1

Owner Pets Tab View

rf" e Ty
Owner Detail] Owner Pets
]
D Name Birth Date
[[] [Karabas 01.01.2010
[] |Cingdz 10.12.2015

Add Pet

Remove Pets

Edit Pet

When he switches into the “Owner Pets” tab in order to
list Pet records, detached owner is re-attached to the
persistence context in order to fetch contents of
the pets collection from DB. During this re-
attachment, however, those changes performed
previously are flushed into DB as a side effect of this

re-attachment

Creates Value...

IIIIIIIIII

Scenario 1: Overview

* Lazy association should have been handled
on Its own

* Any changes performed on the detached
entity should NOT have been reflected into the
DB as a side effect of this handling of lazy
association

Creates Value...

Creates Value...

Scenario 2

Owner Detail Tab View

= - Owner Detail 0 PetsnY'2
Owner List View e \)(e ‘“‘:}
7 ,‘
[] [First Name Last Name E-Mail
First Name Veli

O |Al Giig ali@example.com
'|_Tf'_[Veli Dogru veli@test.com Last Name Dogru
[|Cengiz Cetin cengizi@gmail.con E-Mail @ t com.tr >
[[Avse ‘Us ayse@yahoo.com

Save Changes Cancel

Add Owner | |Remove Owners Edit Owner y‘'/

W

User lists a group of Owners, and selects

an Owner from the list, then selects one and

switches into the detail view

He performs changes over some of the
properties of selected Owner, but doesn't
click “Save Changes” button yet

Scenario 2

Owner Pets Tab View

rf" T T
Owner Detail] Owner Pets
]
D Name Birth Date
[|Karabas 01.01.2010
[|Cangéz 10.12.2015
Add Pet Remove Pets Edit Pet>' ’t,
=

Later, without saving those
changes in Owner entity, he switches into
Owner Pets tab, and starts editing a Pet

Instance

Creates Value...

Edit Pet Dialog

Ea P B
Name @
—
Birth Date |10.12.2015
Sayg G hanges Cancel
//’!

User edits the Pet instance, and clicks
“Save Changes” button. Depending on
Cascade definitions, or attachment status of
Owner entity, changes made on it might
also be reflected into the DB

g

hQT’lptzmi Creates Value...

it solutions

Scenario 2: Overview

* Both changes in Owner and Pet entities are
reflected into DB when Pet's save button clicked

» User was not able to cancel out changes made
onh Owner, and reflect only those changes made
on Pet

» Similar cases to this scenario may occur like
addition of a new Pet entity

» or deletion of an existing Pet entity
unintentionally

Creates Value...

it solutions

\(harezmi

Scenario 2: Overview

* |t IS necessary that old property values or
additions/removals from collections should be

stored somewhere else, so that user changes
could be reverted back whenever user
decides to cancel out his operation

Creates Value...

Scenario 3

Owner Detail Tab View

Owner Detail W(Omer PEEW

Requ

First Name Hasan

Last Name ATl

P—

RY ,’Adg Cancel

-
’l\

or Dialog

Add New Owner Error g@

You need to provide a valid e-mail to add new Owner

Close

User enters details in order to
create a new Owner entity in DB
and clicks “Add” button

However, an error is rised from within
business layer because of errornous
data entered by the user

S
=
=
D
N
3

Owner Detail)(Om}er Pets}

Creates Value...

Scenario 3

Owner Detail Tab View

First Name Hasan

Last Name Arl

E-Mail (*) @m.mm

>

Cancel

Add New Owner Error

I [=p

A detached entity passed to the persist method

Close

User corrects his fault, and clicks
“Add” button again

Unfortunately, this time persistence
layer fails because of the state change
(identifier assignment etc) occured within
domain object during the first attempt

\(herptzmi Creates Value...

it solutions

Scenario 3: Overview

» Persistence layer assigns PK value to identifier
property of Owner entity which Is Iin transient state
during persist operation

« However, transaction is rollbacked and Owner iIs
not saved into DB due to validation error occured

* During the second attempt, persistence layer
thinks that Owner is in detached state because
of the assighed PK value and fails the
persistence operation

IIIIIIIIII

Scenario 3: Overview

» State of the domain object should have been
reverted back to its initial values when
transaction rolled back after the first attempt

Creates Value...

Ul specific changes
in domain classes

Creates Value...

Scenario 4

8

/B\Qmer List View
-Mail

forvme |

E

]__Tf'_[li Giig ali@example.com
]____| \Veli Dogru veli@test.com
]__T/'_[engiz Cetin cengiz@gmail.com
] }r\{'ge Us / ayse@yahoo.com
dd Owrler ‘Re[@re Owners| | Edit Owner

T

It is required to store user selection information ~ Users may ask for Owners' names to be
of Owner records somewhere in the application. listed together as “fullName”, instead of

The most practical place for this is [|) (
Owner entity itself. For this purpose, a property the easiest way to achieve this looks like

Is added into Owner class and used only to

firstName and lastName separated. Again,

adding a method as getFullName() to return

store that selection information. It is not related firstName and lastName concatenated. This
with the business logic at all.

method has nothing to do with business
logic, either.

\(harezmi

IIIIIIIIII

Scenario 4: Overview

* Properties and methods which have nothing
to do with business logic have been added
Into domain classes

e Those domain classes would be aimed to be
used as reusable units In different applications

* |n such a case, adding such properties and
methods would pollute domain model

Creates Value...

IIIIIIIIII

\(harezmi

Problem Summary

 All those problems arise because of direct
binding of persistent domain objects with Ul
layer

» Persistent domain objects should not be
directly used within Ul layer

* |nstead there should be a separate layer to
handle displaying of Ul specific information
obtained from domain objects, grab user input
and pass it into the service layer as well

Creates Value...

k- h(H"szi Creates Value...

Solution !: DTO Layer

Owner Detail Tab View

Owner Detail \](Owner Petsw

First Name | Veli |

DTO

Last Name ﬁogm —l
E-Mail | veli@test.com.tr | ” Laye r

| Save Changes || Cancel |

« Data needed by the Ul is obtained from domain objects and put into
DTOs possibly transformed by those DTOs to make it suitable for Ul
rendering

» Use input is first accumulated within DTOs as Ul components are
bound to DTOs

e The input accumulated within DTOs are transferred into domain
Instances at appropriate times and used within business logic execution

\‘ hur\lptzmi Creates Value...

it solutions

DTO, Wasn't It An Anti-Pattern?

 DTO predates back to Value Object pattern

* In the early days of Java EE application
development, DTOs were mainly used to transfer
data between layers separated by network

 Because EJB method calls were remote only, and
those remote procedure calls were causing
performance problems

« DTOs were then employed in order to reduce
communication overhead of those RPCs

Creates Value...

it solutions

DTO, Wasn't It An Anti-Pattern?

\‘ harezmi

* The most criticized aspect of DTO
pattern is its violation of DRY principle

* According to DRY (dont repeat yourself)
principle, a task should only be Tl repedt modF

1 will not repeat myself
1 I will not repeat myself
Implemented once and at only one il
1 will not repeat myself

single place in the system 1l ot cepeat myself

1 will not repeat myself

1 will not repeat myself

* Most of the time, many of the properties ek o

and methods in domain classes are e~

simply repeated in DTO classes as well

« Apart from such repetition, only few other
properties and methods specific to
DTOs are added

Creates Value...

harezmi

DTO, Wasn't It An Anti-Pattern?

 DTOs, today are mostly
considered as anti-
pattern because of

— such repetition in two
different places

- and strong
encouragement by
several popular Ul and
persistence frameworks
to use domain classes
directly in Ul

|
(

h

ur‘lp;mi

it solutions

Today's Common Situation

Nowadays, domain instances are
usually fetched from DB, using a
persistence framework, such as
JPA/Hibernate

Afterwards, they are directly bound
to Ul components which are
developed using a Ul framework,
like JSF or Vaadin

Hence, transferring user input from
over domain objects directly into
the DB and vice versa is a
mainstream approach

Creates Value...

\‘ hur\lptzmi Creates Value...

it solutions

Revision in Naming:
View Model

» Unfortunately, we've thought that such a naming like
DTO or Value Object may cause underestimation to
the need of separating Ul and domain layers from
each other

* Therefore, entitling our solution with a different name
might be useful in terms of revealing its real benefits In
our enterprise application architectures

* Our preference was to use "View Model” as it reveals
its direct relationship with Ul layer more than the word,
DTO

\(harezmi

'''''''''' Problem with DRY
Still Exists!

 However, revision in the naming alone doesn't
help us to get away from the core of the
problem

 How such a separate View Model layer can be
iImplemented without violating DRY
principle?

Creates Value...

harezmi Solution :
Dynamic Proxy Class

Generation !

* View Model classes can be generated out of
domain classes dynamically at runtime using
Proxy pattern!

Creates Value...

harezmi

it solutions

Proxy Pattern

Proxy is of same type with its target, and it intercepts method calls occuring
between client and the target

Client, on the other hand, is not aware of its interation with the proxy instance

Client

Method calls from client first arrive at proxy instance before reaching their target
destination

Proxy, before and after those method calls can perform tasks related with the call

Client

Proxy Class Diagram

<<jfterfacemsms
Subject

request() : void

]
RealSubject

Creates Value...

\‘ hurslptzmi Creates Value...

it solutions

Proxy Generation Strategies

* Interface Proxy

- Interfaces implemented by the actual model class
are used to generate proxy class

- Known as JDK proxy
* Class Proxy

- Domain class is extended to generate proxy class
- Known as CGLIB or Javassist proxy

Creates Value...

View Model API

* An separate API, in the role of a bridge
between Ul and persistent domain objects is
necessary to operate

* Proxy classes generated from those domain
classes should also implement this API as well

Domain Model

Creates Value...

View Model API

getModel
— Allows acces to the wrapped domain model instance

flush

- Reflects changes accumulated in the view model instance into the
wrapped target domain model instance

refresh
- Reverts state of the view model into domain model instance's initial state
savepoint(id)/rollback(id)

- Allows to save current state of view model by associating it with a given
identifier, so that view model state can be rolled back to the state
identified by that id at a later time

Creates Value...

View Model API

IsDirty
- Detects if view model state has been changed or not
IsSelected/setSelected

- Helps to identify if view model instance is selected through the
bounded Ul component, and to mark it as selected

iIsTransient

- Helps to check if domain model instance wrapped by the view model is
persisted into DB before or not

replace(Object model)

- Replaces given domain model instance with the already wrapped
target domain model instance in the view model

Creates Value...

View Model API

« addedElements(propertyName)

- Returns elements which are added into the collection property
identified by the given propertyName

 removedElements(propertyName)

- Returns elements which are removed from the collection property
identified by the given propertyName

» dirtyElements(propertyName)

- Returns elements whose state has been changed in the collection
property identified by the given propertyName

EntityManager em
em.getTransaction().begin();

= emf.createEntityManager();

List<Owner> owners = em.createQuery(
“from Owner").getResultList();

List<Owner> viewModels = new

ArrayList<Owner>(owners.size());

for(Owner model:owners) {
Owner viewModel = viewModelCreator

.create(Owner.class, model);

viewModels.add(viewModel);

list owners

Creates Value...

Owner List View

Owner selectedOwner =
for(Owner viewModel:viewModels) {

selectedOwner
break:

= viewModel;

(] |First Name Last Name E-Mail
[Al Giig ali@example.com
E[Veli Dogru veli@test.com
] |Cengiz (etin cengizi@gmail.con
] |Avse Us ayse@yahoo.com
Add Owner | |Remove Owners Edii/‘?}j {rmer
Sl
null;

if(((ViewModel<Owner>)viewModel). isSelected ()) {

select an owner and check if it is selected

Owner Detail Tab View

—
Owner Detail \](Dm&r Bets

7

First Name Veli

Last Name Dogru

E-Mail veli@test.com.tr

Save Changes Cancel

Pet selectedPet = null;

for(Pet pek:selectedOwner.getPets()) {
if(((ViewModel<Pet>)pek). isSelected ())
selectedPet = pek;
break;

}
select a pet and check if it is selected

selectedOwner.setEmail("veli@test.com.tr");

((ViewModel<Owner>) selectedOwner)
._savepoint_ ("pets tab view");

edit owner

create a savepoint before switching

into pets tab view

Owner Pets Tab View
Owner Detail \}(Dwner Pets}
D MName Birth Date
[] |Karabas 01.01.2010
[|Cangéz 10.12.2015
Add Pet Remove Pets ~Edit Pet

-
’I\

Creates Value...

k‘ hﬂrpzmi Creates Value...

Edit Pet Dialog edit pet
F— BEXN selectedPet.setName("Cing6z");
Name Cingdz
((ViewModel<Owner>)selectedOwner)
Birth Date |10.12.2015 -_r011baCk_("pets_tab_view") :
Save Changes c@te% ‘ rollback changes made in pets tab view

Owner Detail Tab View

Owner Detail \)(Owner PEEW

((ViewModel<Owner>) selectedOwner). flush ();

_ _ First Name Veli
flush changes accumulated in view
model into the target owner Last Name Dogru
E-Mail veli@test.com.tr

em.getTransaction().commit();
em.close();

Savd'Changes Cancel

71

Creates Value...

2t iew Model API in Action:

Adding Ul Specific Fields & Methods

declare a new public interface OwnerViewModel {
interface to handle public String getFullName();
Ul specific interactions }

public class OwnerViewModelImpl
extends ViewModelImpl<Owner>

implements OwnerViewModel {

Owner List View public OwnerViewModelImpl (Owner model,

ViewModelDefinition definition) {

[] [Full Name E-Mail super(model, definition);
121 Al Gug ali@example.com }
O |Veli Ij‘logrul me]l@“ltest.cor.n @Override
12[Cengiz Cetin cengiz@gmail.com pUbliC St ring get FUllName() {
O |AyseUs ayse@yahoo.com String firstName = _getModel ().getFirstName();
String lastName = _getModel ().getLastName();
| Add Owner | |Remove(}“mer5| | Edit Owner St ring fullName = "":

if (StringUtils.isNotEmpty(firstName)) {
fullName += firstName;
}

if (StringUtils.isNotEmpty(lastName)) {
if (StringUtils.isNotEmpty(fullName)) {
fullName += " ";
}

fullName += lastName;

}

return fullName;

Creates Value...

View Model API In Action:

View Model Definitions

public class PetClinicViewModelDefinitionProvider
implements ViewModelDefinitionProvider {

@Override
public Collection<ViewModelDefinition> getViewModelDefinitions() {

ViewModelDefinition ownerDef =
new ViewModelDefinition(Owner.class,OwnerViewModelImpl.class);

ViewModelDefinition petDef = new ViewModelDefinition(Pet.class);
ownerDef.addDefinition("pets", petDef);

return Arrays.asList(ownerDef, petDef);

Conclusion

* Reusing persistent domain objects
within the Ul layer causes several
persistence related problems in
enterprise applications

* An intermediate layer placed in
between Ul and domain models is —
required o

 An API to execute operations through
this intermediate layer becomes a
bridge between Ul and domain models

e Such a layer, which is called as “View
Model” can be created by employing
dynamic proxy class generation
method without violating DRY principle!

Q-

Creates Value...

™
T

Creates Value...

it solutions

Questions & Answers

Contact

e Harezmi IT Solutions

e http://www.harezmi.com.tr
e InNfo@harezmi.com.tr

Creates Value...

http://www.harezmi.com.tr/
mailto:info@harezmi.com.tr

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

