
Employing a View Model API
Based on

Dynamic Proxies
(Decoupling Persistent Domain Objects from UI)

Who is Kenan Sevindik?

● Over 15 years of enterprise
application development
experience

● Involved in creation and
development of
architectures in various
enterprise projects

● Has extensive knowledge
and experience about
enterprise Java technologies,
such as Spring, Spring
Security, Hibernate, Vaadin...

Who is Kenan Sevindik?

● Co-author of Beginning
Spring Book (published in
2015)

● Founded Harezmi IT
Solutions in 2011

● What Harezmi does?
– Involves in development of

enterprise Java applications

– Offers consultancy and
mentoring services

– Organizes enterprise Java
technologies related trainings

Several problems arise in case
persistent domain objects

fetched via JPA/Hibernate are
directly bound to UI layer!

What is the Problem?

Scenario 1

User lists a group of Owner entities, selects
an Owner within the list, and navigates into
the detail view

User may change some of the properties of
selected Owner entity

● Let's assume we have a typical master-detail UI
in which Owner and his/her Pets are displayed

● And assume, Owner – Pets association is
fetched on demand (lazy)

Scenario 1

When he switches into the “Owner Pets” tab in order to
list Pet records, detached owner is re-attached to the
persistence context in order to fetch contents of
the pets collection from DB. During this re-
attachment, however, those changes performed
previously are flushed into DB as a side effect of this
re-attachment

Scenario 1: Overview

● Lazy association should have been handled
on its own

● Any changes performed on the detached
entity should NOT have been reflected into the
DB as a side effect of this handling of lazy
association

Scenario 2

User lists a group of Owners, and selects
an Owner from the list, then selects one and
switches into the detail view

He performs changes over some of the
properties of selected Owner, but doesn't
click “Save Changes” button yet

Scenario 2

Later, without saving those
changes in Owner entity, he switches into
Owner Pets tab, and starts editing a Pet
instance

User edits the Pet instance, and clicks
“Save Changes” button. Depending on
Cascade definitions, or attachment status of
Owner entity, changes made on it might
also be reflected into the DB

Scenario 2: Overview

● Both changes in Owner and Pet entities are
reflected into DB when Pet's save button clicked

● User was not able to cancel out changes made
on Owner, and reflect only those changes made
on Pet

● Similar cases to this scenario may occur like
addition of a new Pet entity

● or deletion of an existing Pet entity
unintentionally

Scenario 2: Overview

● It is necessary that old property values or
additions/removals from collections should be
stored somewhere else, so that user changes
could be reverted back whenever user
decides to cancel out his operation

Scenario 3

User enters details in order to
create a new Owner entity in DB
and clicks “Add” button

However, an error is rised from within
business layer because of errornous
data entered by the user

Required

Scenario 3

User corrects his fault, and clicks
“Add” button again

Unfortunately, this time persistence
layer fails because of the state change
(identifier assignment etc) occured within
domain object during the first attempt

Scenario 3: Overview

● Persistence layer assigns PK value to identifier
property of Owner entity which is in transient state
during persist operation

● However, transaction is rollbacked and Owner is
not saved into DB due to validation error occured

● During the second attempt, persistence layer
thinks that Owner is in detached state because
of the assigned PK value and fails the
persistence operation

Scenario 3: Overview

● State of the domain object should have been
reverted back to its initial values when
transaction rolled back after the first attempt

Scenario 4

It is required to store user selection information
of Owner records somewhere in the application.
The most practical place for this is
Owner entity itself. For this purpose, a property
is added into Owner class and used only to
store that selection information. It is not related
with the business logic at all.

Users may ask for Owners' names to be
listed together as “fullName”, instead of
firstName and lastName separated. Again,
the easiest way to achieve this looks like
adding a method as getFullName() to return
firstName and lastName concatenated. This
method has nothing to do with business
logic, either.

UI specific changes
in domain classes

Scenario 4: Overview

● Properties and methods which have nothing
to do with business logic have been added
into domain classes

● Those domain classes would be aimed to be
used as reusable units in different applications

● In such a case, adding such properties and
methods would pollute domain model

Problem Summary

● All those problems arise because of direct
binding of persistent domain objects with UI
layer

● Persistent domain objects should not be
directly used within UI layer

● Instead there should be a separate layer to
handle displaying of UI specific information
obtained from domain objects, grab user input
and pass it into the service layer as well

Solution !: DTO Layer

Domain
Model

DTO
Layer

● Data needed by the UI is obtained from domain objects and put into
DTOs possibly transformed by those DTOs to make it suitable for UI
rendering

● Use input is first accumulated within DTOs as UI components are
bound to DTOs

● The input accumulated within DTOs are transferred into domain
instances at appropriate times and used within business logic execution

DTO, Wasn't It An Anti-Pattern?

● DTO predates back to Value Object pattern
● In the early days of Java EE application

development, DTOs were mainly used to transfer
data between layers separated by network

● Because EJB method calls were remote only, and
those remote procedure calls were causing
performance problems

● DTOs were then employed in order to reduce
communication overhead of those RPCs

DTO, Wasn't It An Anti-Pattern?

● The most criticized aspect of DTO
pattern is its violation of DRY principle

● According to DRY (dont repeat yourself)
principle, a task should only be
implemented once and at only one
single place in the system

● Most of the time, many of the properties
and methods in domain classes are
simply repeated in DTO classes as well

● Apart from such repetition, only few other
properties and methods specific to
DTOs are added

DTO, Wasn't It An Anti-Pattern?

● DTOs, today are mostly
considered as anti-
pattern because of
– such repetition in two

different places

– and strong
encouragement by
several popular UI and
persistence frameworks
to use domain classes
directly in UI

Today's Common Situation

● Nowadays, domain instances are
usually fetched from DB, using a
persistence framework, such as
JPA/Hibernate

● Afterwards, they are directly bound
to UI components which are
developed using a UI framework,
like JSF or Vaadin

● Hence, transferring user input from
over domain objects directly into
the DB and vice versa is a
mainstream approach

Revision in Naming:
View Model

● Unfortunately, we've thought that such a naming like
DTO or Value Object may cause underestimation to
the need of separating UI and domain layers from
each other

● Therefore, entitling our solution with a different name
might be useful in terms of revealing its real benefits in
our enterprise application architectures

● Our preference was to use ”View Model” as it reveals
its direct relationship with UI layer more than the word,
DTO

Problem with DRY
Still Exists!

● However, revision in the naming alone doesn't
help us to get away from the core of the
problem

● How such a separate View Model layer can be
implemented without violating DRY
principle?

Solution :
Dynamic Proxy Class

Generation !
● View Model classes can be generated out of

domain classes dynamically at runtime using
Proxy pattern!

Proxy Pattern

Client Target

Proxy

Method calls from client first arrive at proxy instance before reaching their target
destination

Proxy, before and after those method calls can perform tasks related with the call

Proxy is of same type with its target, and it intercepts method calls occuring
between client and the target

Client, on the other hand, is not aware of its interation with the proxy instance

Proxy Class Diagram

Proxy Generation Strategies

● Interface Proxy
– Interfaces implemented by the actual model class

are used to generate proxy class

– Known as JDK proxy

● Class Proxy
– Domain class is extended to generate proxy class

– Known as CGLIB or Javassist proxy

View Model API

● An separate API, in the role of a bridge
between UI and persistent domain objects is
necessary to operate

● Proxy classes generated from those domain
classes should also implement this API as well

UI Domain Model

View Model API

● getModel
– Allows acces to the wrapped domain model instance

● flush
– Reflects changes accumulated in the view model instance into the

wrapped target domain model instance

● refresh
– Reverts state of the view model into domain model instance's initial state

● savepoint(id)/rollback(id)
– Allows to save current state of view model by associating it with a given

identifier, so that view model state can be rolled back to the state
identified by that id at a later time

View Model API

● isDirty
– Detects if view model state has been changed or not

● isSelected/setSelected
– Helps to identify if view model instance is selected through the

bounded UI component, and to mark it as selected

● isTransient
– Helps to check if domain model instance wrapped by the view model is

persisted into DB before or not

● replace(Object model)
– Replaces given domain model instance with the already wrapped

target domain model instance in the view model

View Model API

● addedElements(propertyName)
– Returns elements which are added into the collection property

identified by the given propertyName

● removedElements(propertyName)
– Returns elements which are removed from the collection property

identified by the given propertyName

● dirtyElements(propertyName)
– Returns elements whose state has been changed in the collection

property identified by the given propertyName

View Model API in Action
EntityManager em = emf.createEntityManager();
em.getTransaction().begin();

List<Owner> owners = em.createQuery(
"from Owner").getResultList();

List<Owner> viewModels = new
ArrayList<Owner>(owners.size());

for(Owner model:owners) {
Owner viewModel = viewModelCreator

.create(Owner.class, model);
viewModels.add(viewModel);

}

Owner selectedOwner = null;
for(Owner viewModel:viewModels) {

if(((ViewModel<Owner>)viewModel)._isSelected_()) {
selectedOwner = viewModel;
break;

}
}

list owners

select an owner and check if it is selected

View Model API in Action

selectedOwner.setEmail("veli@test.com.tr");

...

((ViewModel<Owner>) selectedOwner)
._savepoint_("pets_tab_view");

Pet selectedPet = null;

for(Pet pek:selectedOwner.getPets()) {
if(((ViewModel<Pet>)pek)._isSelected_()) {

selectedPet = pek;
break;

}
}

edit owner

create a savepoint before switching
into pets tab view

select a pet and check if it is selected

View Model API in Action

selectedPet.setName("Cingöz");

...

((ViewModel<Owner>)selectedOwner)
._rollback_("pets_tab_view");

((ViewModel<Owner>) selectedOwner)._flush_();

em.getTransaction().commit();
em.close();

edit pet

rollback changes made in pets tab view

flush changes accumulated in view
model into the target owner

View Model API in Action:
Adding UI Specific Fields & Methods

public interface OwnerViewModel {
public String getFullName();

}

public class OwnerViewModelImpl
extends ViewModelImpl<Owner>

implements OwnerViewModel {
public OwnerViewModelImpl(Owner model,

ViewModelDefinition definition) {
super(model, definition);

}

@Override
public String getFullName() {

String firstName = _getModel_().getFirstName();
String lastName = _getModel_().getLastName();
String fullName = "";
if (StringUtils.isNotEmpty(firstName)) {

fullName += firstName;
}
if (StringUtils.isNotEmpty(lastName)) {

if (StringUtils.isNotEmpty(fullName)) {
fullName += " ";

}
fullName += lastName;

}
return fullName;

}
}

declare a new
interface to handle

UI specific interactions

View Model API in Action:
View Model Definitions

public class PetClinicViewModelDefinitionProvider
implements ViewModelDefinitionProvider {

@Override
public Collection<ViewModelDefinition> getViewModelDefinitions() {

ViewModelDefinition ownerDef =
new ViewModelDefinition(Owner.class,OwnerViewModelImpl.class);

ViewModelDefinition petDef = new ViewModelDefinition(Pet.class);
ownerDef.addDefinition("pets", petDef);

return Arrays.asList(ownerDef, petDef);
}

}

Conclusion

● Reusing persistent domain objects
within the UI layer causes several
persistence related problems in
enterprise applications

● An intermediate layer placed in
between UI and domain models is
required

● An API to execute operations through
this intermediate layer becomes a
bridge between UI and domain models

● Such a layer, which is called as “View
Model” can be created by employing
dynamic proxy class generation
method without violating DRY principle!

Questions & Answers

Contact

● Harezmi IT Solutions
● http://www.harezmi.com.tr
● info@harezmi.com.tr

http://www.harezmi.com.tr/
mailto:info@harezmi.com.tr

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

